COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

COURS : ALGORITHMES POUR L’'INTELLIGENCE ARTIFICIELLE
== ALGORITHME KNN ==

1) UN CLASSIFICATEUR OPTIMAL : LE CLASSIFICATEUR DE BAYES........cceetveeeennciinninnneennnnnens 2
I1) LA METHODE DES K PLUS PROCHES VOISINS (KNN)cccceervererereereeesseesaesssesssesssessassssens 5
[1.1. Principe de fonCtioNNEMENT..........viiiieeee e e e 5
[1.2. Frontiere de d@CiSION......c.cveiiiiiiieeieeee e s 6
[I.3. Erreur de généralisation : biais et variance du modelecccceeeeeiiieeeeicieee e, 7
I1.4. Taux d’erreur d’apprentissage et de validationccccccveeeiviiiie e, 9
[1.5. Métriques SEOMELriQUES USUEIIES......cc..viiii i e e 10
[1.6. Indice et distance de JACCard..........oocueiiiiiiiiii e 11
[I.7. Comparaison de textes, matrices termes-doCUMENTSccovciveeiiriieeeeriieeeeeeiiee e 11
[1.8. Algorithme KNN en classificationccuueiiiciiiiiieiiiee e 13
[1.9. Algorithme KNN €N FEZreSSiONueiiicciiieeecciiieecectee e et e e eeire e e e e saae e e s e eaaeeesersaeeeeanes 15

COURS : ALGORITHMES POUR L'INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

I) UN CLASSIFICATEUR OPTIMAL : LE CLASSIFICATEUR DE BAYES

Considérons deux densités conditionnelles fA (x) = fxjy=a(x) et fo(x) = fx;y=0(x) (dans
notre exemple, chaque densité est un mélange de deux gaussiennes), décrivant les
probabilités qu’un élément x = (x;, x,)7 € R? appartienne a la classe y = « triangle » ou
« cercle » :

2 2
fA(x) = Z Wam N (X6 Uam; Zam) fO(x) = Z Wom N(x; .uOm;ZOm)
1 1
NG =———=—exp|—5x— W= (x—
(6w Z) 20 m‘”@(> (x—w' 2 (x u))

..avecw., =0et Y 0om = 1.
(voir https://informatique-f1.fr/jupyterlite/lab/index.html?path=Densites.ipynb pour les

valeurs des parametres des vecteurs moyennes p.,,, des matrices de covariance Z.,,et des
poids de mélange w.,,, de cet exemple)

densité fa(x) densité fo(x)

022

018

011

0.20
0.15
0.10
0.05

0.00

Figure 1 : Densité de probabilité f , (x) et f , (x)

https://informatique-f1.fr/jupyterlite/lab/index.html?path=Densites.ipynb

COURS : ALGORITHMES POUR L'INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

On tire maintenant 80 triangles et 80 cercles en suivant les densités de probabilités fa (x) et

fo(x):

densité fa(x)
- tirage 80 triangles -

02234

01862

01489

01117

oo7as

00372

0.30

[0.25

[0.20

[0.15

0.10

0.05

~ 0.00

ensire

densité

densité fo(x)
- tirage 80 cercles -

02226

01855

00371

0.0000

[0.30

[0.25

0.20

[0.15

[0.10

[0.05

=" 0.00

Figure 2 : Tirage de 80 triangles et 80 cercles selon les densités de probabilités f , (x) et f ,(x)

Pour une observation de test x, = ((x)1, (x0)2)7, la probabilité de classification correcte
est alors maximisée, en moyenne, par un classificateur trés simple qui affecte chaque

observation a la classe la plus probable, compte tenu des valeurs de ses caractéristiques
(x0)1 et (xg),. Autrement dit, il suffit d’affecter a une observation de test x, la classe j pour

laquelle la probabilité conditionnelle :

Pr(Y =j| X =x,)

... est la plus forte.

Ce classificateur trés simple est appelé le classificateur de Bayes. Dans notre probleme, ou il
n’y a que deux valeurs possibles pour la réponse, le classificateur de Bayes consiste a prédire
la classe « triangle » si Pr(Y = "triangle" | X = x,) > 0.5, et la classe « cercle » sinon.

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

Pour obtenir la probabilité conditionnelle Pr(Y = A | X = x,) a partir des densités de
probabilité fa (x) et fo(x), on applique la formule de Bayes :

P(X € B.(xy) |Y =A)-P(Y = A)

p(y =A|XE Bg(xo)) = p(X €EB (xo))

On définit : P(Y = A | X = xo) := lim P(Y = A| X € B.(x0))
E—

.y P(X €B,(x) | Y =A)-P(Y = A)
T e P(X €B.(x0) | Y =2) P(Y =A) + P(X €B.(x5) | Y = 0)- P(Y = 0)

Comme les densités conditionnelles fx (x) et fo(x) sont continues en x,, on a:
P(X € Be(x0) | Y = k) ~ fi(xo) - Vol(B:(xo))

On obtient donc :

P(Y=A|X=1xp) fa(xe) - P(Y =A)

 falxe) " P(Y = &) + fo(xo) - P(Y = 0)
Dans notre cas, on considére les classes équiprobables : o = my = 0.5. On obtient alors :

fa(x0)
fa(xo) + fo(xo)

Ainsi, prédire la classe « triangle » si P(Y = A | X = x;) > 0.5 revient géométriquement a
tracer une limite sur la condition fa (xo) = fo(x¢), c’est-a-dire la ligne ol les deux surfaces
des densités se croisent.

P(Y=A|X=x,) =

La ligne violette en pointillés sur la Figure 3 représente cette limite. On I'appelle la frontiére
de décision de Bayes. La prédiction du classificateur de Bayes est déterminée par cette
frontiere de décision : une observation qui se situe du c6té orange de la frontiére sera
affectée a la classe orange, et de méme une observation située du coété bleu de la frontiere
sera affectée a la classe bleue.

3

Frontiére de Bayes : 7, £, (x,) = nofy (x,) //
’

Figure 3 : Frontiéere de décision de Bayes

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

Le classificateur de Bayes produit le plus faible taux d’erreur de test possible, appelé le taux
d’erreur de Bayes. Comme le classificateur de Bayes choisira toujours la classe pour laquelle
la probabilité conditionnelle Pr(Y = j | X = x,) est la plus grande, le taux d’erreur en

X = xoseral —max;{Pr(Y = j | X = x,)}. De fagon générale, le taux d’erreur de Bayes
global est donné par :

1—E|[maxPr(Y =j| X = x,)
j

... ol I'espérance moyenne cette probabilité sur toutes les valeurs possibles de X. Pour nos
données simulées, le taux d’erreur de Bayes est supérieur a zéro parce que les classes se
chevauchent dans la population réelle pour certaines valeurs de x;. Le taux d’erreur de
Bayes est analogue a I'erreur irréductible, discutée au chapitre 1.3.1.

En théorie, I'idéal serait de toujours prédire des réponses qualitatives a I'aide du
classificateur de Bayes. Mais, avec des données réelles, nous ne connaissons pas les densités
fxjy=j(x) ni les probabilités a priori r; = P(Y = j). Par conséquent, la probabilité a
posteriori Pr(Y = j | X = x,) est inconnue.

Le classificateur de Bayes sert de référence idéale inatteignable, a laquelle on compare les
autres méthodes. De nombreuses approches cherchent a estimer la distribution
conditionnelle de Y sachant X, puis a classer une observation donnée dans la classe ayant la
probabilité estimée la plus élevée. Parmi ces méthodes, la méthode des k plus proches
voisins (K-nearest neighbors, KNN) que nous allons étudier maintenant cherche a établir
localement la probabilité a posteriori a partir des voisins d’'une observation.

1) LA METHODE DES K PLUS PROCHES VOISINS (KNN)

II.1. Principe de fonctionnement

Etant donné un entier strictement positif k et une observation de test x,, le classificateur
KNN commence par identifier les k points de I'échantillon d’apprentissage les plus proches
de x,, notés V. La notion de « proximité » dépend d’une distance d(-,-) choisie sur I'espace
des variables explicatives : géométriquement, N, correspond aux points situés dans une
boule centrée en x; (au sens de la distance d), de rayon égal a la distance au k-ieme plus
proche voisin. Si on appelle X}, le k-ieme plus proche voisin de x,, :

‘NE) = {l € {1,...,77.} : d(XiﬂxO) < d(xO'Xk)}

Il estime ensuite la probabilité conditionnelle d’appartenir a la classe j comme la fraction des
points de V; dont la valeur de réponse est égale aj :

— . 1) 1, Y :j
Prv =j1X =x) =+ Z 8y,j ou by ; = {0 sinon
iENy ’

Dans ce cours, nous utiliserons principalement la distance euclidienne (celle explicitement
au programme), mais d’autres distances seront évoquées par la suite.

Enfin, la méthode KNN affecte I'observation de test x a la classe dont la probabilité estimée
(par I'expression précédente) est la plus élevée. En I'absence d’autres informations, on peut
choisir k = |v/n], ol n est la taille du jeu de données.

COURS : ALGORITHMES POUR L'INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

Notons que dans l'algorithme des k plus proches voisins, il n'y a pas de phase
d’apprentissage : aucun parametre n'est appris a partir des données. On dit que k est un
hyperparametre. Et pour éviter d'avoir deux classes de méme cardinal, on choisit souvent
pour k un nombre impair.

La figure ci-contre fournit un exemple illustratif de ?
I"'approche KNN. Sur cette figure est représenté un petit °©
jeu de données d’apprentissage composé de six A7
observations bleues et de six observations orange. o A x
L’objectif est de faire une prédiction pour le point indiqué ~
par la croix noire. Supposons que nous choisissions k = 3.
KNN identifie alors d’abord les trois observations les plus
proches de la croix. Ce voisinage est représenté par un =

cercle (distance euclidienne). Il contient deux triangles et -z - ° 2
un cercle, ce qui conduit a des probabilités estimées de frigyre 4 : Approche KNN avec k = 3
2/3 pour la classe triangle et de 1/3 pour la classe

cercle. Par conséquent, KNN prédit que la croix noire appartient a la classe triangle.

11.2. Frontiere de décision

Malgré le fait qu’il s’agisse d’'une approche tres simple, KNN peut souvent produire des
classificateurs étonnamment proches du classificateur de Bayes optimal. La Figure 5
présente la frontiére de décision KNN (en trait plein noir), avec k=31, appliquée a notre jeu
de données simulées. On remarque que, méme si la vraie distribution n’est pas connue du
classificateur KNN, la frontiére de décision KNN est trés proche de celle du classificateur de
Bayes. Pour tracer une frontiere de décision en 2D, on évalue le classifieur sur une grille de
points (x1, X2) couvrant le domaine d’intérét, ici [-3,3]x[-3,3].

3

X1

Figure 5 : Frontiére de décision KNN (k=31, distance euclidienne)

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

Le choix de k a un effet sur le classificateur KNN obtenu. La Figure 6 présente deux
ajustements KNN sur les données simulées, avec k=1 et k=100.

Lorsque k=1, la frontiére de décision est excessivement flexible et détecte dans les données
des structures qui ne correspondent pas a la frontiere de décision de Bayes. Si on changeait
légérement les données d’entrainement, la frontieére changerait beaucoup car la frontiére
est dentelée et dépend fortement du tirage.

A mesure que k augmente, la méthode devient moins flexible et produit une frontiére de
décision proche d’une frontiéere linéaire. Sur ce jeu de données simulées, ni k=1 ni k=100 ne
donnent de bonnes prédictions.

3 10

08

X1 X1

Figure 6 : Frontiére de décision KNN vs Bayes (k=1 et k=100)

I1.3. Erreur de généralisation : biais et variance du modéle

Nous avons vu en page 7 que 'erreur quadratique moyenne de prédiction est composée
d’une erreur réductible et d’une erreur irréductible (page 7) :

E[(v - fo0) | =E[(fo0 - foo) |+ var

Irréductible

Réductible

Ici, f est une fonction fixe mais inconnue de X = (X1, Xy, ..., Xp) et € est un terme d’erreur
aléatoire, indépendant de X et de moyenne nulle. On avait supposé la fonction de prédiction
f et I'’ensemble des prédicteurs X tous deux fixés, de sorte que la seule variabilité provienne
de 'erreur aléatoire €.

On peut maintenant aller plus loin : en pratique, la fonction apprise f n’est pas fixe, car elle
dépend du jeu d’entrainement : si on répete I'apprentissage sur un autre échantillon, on
obtient en général un modéle différent. Nous allons introduire I'erreur de généralisation, qui
doit donc intégrer cette nouvelle source de variabilité. Cela va conduire a décomposer
I’erreur réductible en deux contributions : le biais du modéle (erreur systématique) et sa
variance (sensibilité aux données).

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

On note Ep I'espérance sur les jeux de données D et on suppose toujours Y = f(X) + e et
E[e] = 0. Pour un x fixé, f(x) dépend du jeu d’entrainement D et on peut montrer que
I’erreur quadratique moyenne sur la prédiction peut se décomposer en trois termes :

Ep [(Y — f(x))2 | X = x] = (]E[f(x)] — f(x))2 + Var (f(x)) + Var(e)

irreductible

biais? variance

Dans le contexte KNN (et plus largement en apprentissage statistique), le biais et la variance
décrivent deux composantes de I’erreur de généralisation liées a I'apprentissage a partir
d’un échantillon d’entrainement :
- La moyenne des modeéles]E[f] peut étre systématiquement décalée par rapport a f :
c’est le biais ;
- Le modele f change si on change I’échantillon d’apprentissage. C'est cette variabilité
qui engendre la variance.

Sur la Figure 7, on fixe le modeéle, puis on tire 20 jeux d’entrainement différents (80 triangles
+ 80 cercles). Pour chaque jeu, on calcule la frontiere KNN et on superpose les 20 frontiéres.
On compare ensuite k=1 et k=50. On ajoute la frontiére de Bayes en pointillés violets.

Pour k=1, on observe davantage de frontieres « dentelées » qui changent beaucoup d’un
tirage a I'autre. C’est la signature d’une variance élevée : le modéle dépend fortement des
points exacts de I’échantillon.

Pour k=50, les 20 frontiéres sont beaucoup plus regroupées : la variance est plus faible. Mais
elles peuvent étre systématiquement décalées par rapport a la frontiere de Bayes. Ce
décalage « systématique » correspond au biais : la régle est trop lissée pour suivre la vraie
structure locale.

Superposition de 20 frontiéres KNN (k=1) Superposition de 20 frontiéres KNN (k=50)
Bayes en pointillés (violet) Bayes en pointillés (violet)
3 77
i
'y
21 ’\r
W'e
it o]
‘}" l'r
¥ 4
1 £ % o
Ao, o
vl (o]
i1 Co)
o o
. AN O o] o
o 0 o 230 @ o
- TR r t’ gd)q} © ©
— DR .&'_/g e . o o
e ot D
0~ i 3O As ©
e %9 5 o
—1 4~ " (o]
o. 0 0
9 o OO o
o o
o o o 000
00 o
-2 (o]
o o}
-3 T . T ‘ T -3 ‘ T T . ‘
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2
X1 X1

Figure 7 : lllustration de I'effet de k sur le biais et la variance du modéle

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

11.4. Taux d’erreur d’apprentissage et de validation

Il n’existe pas de relation forte entre le taux d’erreur d’apprentissage et le taux d’erreur de
test. Avec k=1, le taux d’erreur d’apprentissage de KNN est nul, mais le taux d’erreur de test
peut étre assez élevé. De maniére générale, lorsque I'on utilise des méthodes de
classification plus flexibles, le taux d’erreur d’apprentissage diminue, mais le taux d’erreur
de test ne diminue pas nécessairement.

La figure représente les erreurs de test et d’apprentissage de KNN en fonction de 1/k.
Lorsque 1/k augmente, la méthode devient plus flexible. Le taux d’erreur d’apprentissage
diminue systématiquement a mesure que la flexibilité augmente. En revanche, I'erreur de
test présente une forme caractéristique en U : elle diminue d’abord (avec un minimum aux
alentours de K=31), puis augmente de nouveau lorsque la méthode devient excessivement
flexible et sur-ajuste les données.

Quand k diminue, le modéle devient plus flexible : il « colle » davantage aux données. A
I’'extréme, k=1 mémorise I'échantillon : chaque point est son propre plus proche voisin, donc
I’erreur d’apprentissage tombe a zéro. Cela ne signifie pas que le modéle généralise bien.

L'erreur de test a souvent une forme en U car deux effets antagonistes coexistent (biais —
variance). Lorsque k est grand (donc 1/k petit), la décision est trés lissée et le modéle est
rigide. Le biais est élevé, ce qui entraine un sous-ajustement et une erreur de test élevée.
Lorsque k est tres petit (donc 1/k grand), la décision est trés instable et la variance élevée.
Cela entraine un surajustement (overfitting) et les erreurs de test remontent.

KNN: erreurs d'apprentissage et de test en fonction de 1/k

0.25 4

0.20

0.15 4

min test: k=31

Taux d'erreur

0.10 A

0.05 4

—&— Erreur d'entrainement

0007 Erreur de validation

T T
0.02 0.05 0.10 0.20 0.50 1.00
1k

Figure 8 : Erreur d'apprentissage et de test en fonction de 1/k

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

II.5. Métriques géométriques usuelles

Changer la distance utilisée pour regrouper les voisins d’une observation peut changer
fortement la frontiére. Voici par exemple trois distances naturelles qui peuvent étre utilisées
avec KNN dés que les observations sont des vecteurs réels. Ces distances sont sensibles a
I’échelle des variables : il faut souvent normaliser les données.
Pour deux points x = (xl,...,xp) etz = (zl,...,zp) dans R? :

- Distance L1 (Manhattan) :

p
d(62) = I =zl =) |~ 5
j=1

- Distance L, (Euclidienne) :

dp(x,2) = |lx —zll; =

- Distance L» (Chebyshev) :

do(x,2) = |lx = zllo = g}?‘s)élxj — zj|

Distance L, (Euclidienne) Distance L, (Manhattan) Distance L, (Chebyshev)
o (o} o o o
GFET //\\ [k-
1 /’ \\ 1 ’,/ \\ 1 : :
] “ L, NG | :
; \ X ! o 5 ‘\ X ; o i X ! o
< 0 \ / < 0 S ,6 X 0 H ol
\\\\ _/Q AN ,” :_ :
- |] Se———
1 - 1 °5 ! 8
2 2 2
2 1 0 3 2 1 0 1 2 3 0 2 3
X X1 X

%)

X4

‘iu!lgn’i
\/
-

(L

AN

X2 o as)

Figure 9 : Distances L,, L; et L.,

Ces distances usuelles sont utilisées dans les problémes numériques ou qui ont une
modélisation géométrique, mais elles ne sont pas adaptées a toutes les situations. On peut
alors utiliser d’autres mesures ou indices de similarité dont quelques exemples sont donnés
dans les paragraphes suivants.

10

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

11.6. Indice et distance de Jaccard

On définit lindice de Jaccard comme une mesure de similarité entre deux ensembles finis A
et B (I'un d’eux étant non vide) en posant :

1A N B| 0<J(4,B)<1
AUB] qui a les propriétés {J(A,B) =1 © A =B
J(AB)=0sANB =0

J(4,B) =

On peut lui associer la distance de Jaccard, définie par :

|JAnB| _|AAB]
|JAUB| |AUB]

d,(4,B)=1-J(4B)=1

... oU A A B désigne la différence symétrique entre AetB: AAB =(AUB)\ (AN B)

Cet indice intervient lorsqu’on souhaite comparer des éléments caractérisés par des
attributs booléens/binaires (présence ou non de certaines propriétés).

Supposons que nous voulions comparer des individus selon qu’ils possédent ou non des

propriétés P;, i = {0,1,2,3,4}. Chaque individu est représenté par un vecteur de {0,1}" avec
x; = 1 si et seulement si P;(x) :

i 9]
Ici, A=1{0,1,3} et B = {1,2} donc AN B = {1} et AU B = {0,1,2,3} et 'indice de Jaccard
vaut :

X < ne vérifie pas P,, Y « vérifie P,

_ O R
OO R RO

AnB| 1

La distance de Jaccard vaut :
d](A,B) =1-J(A4,B)=0,75

La distance de Jaccard est nulle lorsque les vecteurs X et Y sont identiques, égale a 1 lorsque
Vi, Xi * Vi.

I.7. Comparaison de textes, matrices termes-documents

Pour évaluer la proximité entre documents textes issus d’'un méme corpus on commence par
en donner une représentation sommaire en repérant les mots utiles du corpus et en
associant a chaque document D; un vecteur colonne X; dont le terme X;; dépend de |a
fréquence du mot ou du terme t; dans le document et dans le corpus C.

Le nombre d’occurrences du terme pourrait servir a comparer grossierement des documents
de méme taille, mais on préfére le plus souvent le codage TF-IDF (TF : fréquence ou plutot

11

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

nombre d’occurrences des termes dans les documents, IDF : inverse du nombre de
documents contenant un terme) défini par les formules :

tfti,dj : fréquence de t; dans le document D;
Xij = tfti‘dj X ln 7 avec) bre de d
Nl ft, ft, : nombre de documents contenant t;
TF N——

IDF
Un indice de similarité entre deux documents est alors donné par la similarité cosinus définie
comme le cosinus de I'angle entre X; et X, comme vecteurs de R" avec n la taille du lexique
retenu (de quelques milliers a quelques dizaines de milliers de termes en pratique) :

ZiXijXig (X, Xp)
X1 Xl (1G]] X L2
Dans le cas ou le terme t; est présent dans tous les documents, on a alors df;, = |C], et donc
son IDF vaut 0 et x;; = 0. Ce serait le cas avec les mots courants de la langue, articles,

prépositions, auxiliaires que I'on évite systématiquement de prendre en compte (mots-vides
ou stop-words en anglais).

sim(D;, Dy,) =

Dans le cas ou le terme t; nest présent que dans un seul document Dj, on a df;; = 1. Ainsi le
coefficient de tf; 4, dans x; ; prend la valeur maximale et x; ; = tfti_djlnIC'I.

Si on pose 8(D;, Dy) = 1 — sim(D;, Dy), alors si §(Dj, D) = 0 cela signifie que
sim(Dj, Dk) = 1 et donc que les deux vecteurs sont proportionnels. Donc pour tout indice i
qui correspond au méme terme t;, ona:

|C]

tfr. g. X In—-——
o= Jug) dfe, _ Y
Xik ICl tfe,a

tfti’dk X Iln W

Cela signifie que les occurrences des mots dans les deux documents sont proportionnelles,
comme par exemple si D; = « Bonjour a toi. » et Dj = « Bonjour a toi. A toi, Bonjour ! ».

Prenons I’'exemple suivant composé de trois documents : D; = « chat mange poisson » ;
D, = « chien mange os » et D3 = « chat chat mange ».
Le vocabulaire associé est : [chat, chien, mange, poisson, 0s].

Les fréquences des termes : tf;, 4 = (1,0,1,1,0), tftd, = (0,1,1,0,1) et tft,ds = (2,0,1,0,0)
Nombre de documents contenant les termes : dftl. =(2,1,3,1,1)
X, = tfti,d1 X lncll%tll = tfti’dl X lnm

= tft,a, X (0.405,1.0986,0,1.0986,1.0986)

= (1,0,1,1,0) - (0.405,1.0986,0,1.0986,1.0986) = (0.405, 0,0, 1.0986, 0)
x, = (0,1,1,0,1) - (0.405,1.0986,0,1.0986,1.0986) = (0,1,0986, 0,0, 1.0986)

x3 = (2,0,1,0,0) - (0.405,1.0986,0,1.0986,1.0986) = (0.8109,0,0,0,0)
e sim(Dy,D,) = X)) Je seul mot commun est « mange » mais comme il est
1X1l211X2 112

présent partout, son IDF vaut O et il ne contribue pas au TF-IDF.
e sim(D;,D3;) = 0.345 ; sim(D,, D3) =0 : le seul mot commun est « mange »

12

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

11.8. Algorithme KNN en classification

On utilisera ici les notations argmax et argmin : étant donné des réels a,, ..., ap, la notation

argmax a; ou argmax(al, . ..,ap) désigne un indice j, € [1, p] tel que max_a; = aj,. La
jeLp] jelipl
notation argmin est définie de maniere analogue.

On considere une classification multi-classes avec K classes ci, ¢, ..., Cp, un ensemble de test
{(x0, ¥ }i=1.n-

Algorithme des k plus proches voisins - classification

KNN_CLASSIFICATION(x) :

I Renvoyer argmax|{i € [1,n] : x; € Ni(x) et y; = j}|
jelpl

Voici une implémentation en Python avec distance euclidienne :

import numpy as np

def knn_classification(X, vy, z, k):
X = np.asarray(X)
y = np.asarray(y)
z = np.asarray(z)

Normes euclidiennes
d2 = np.linalg.norm((X - z), axis=1) # shape (n,)

Indices des k plus proches voisins
idx = np.argsort(d2)[:k] # shape (k,)

Labels des voisins
voisins = y[idx]

Vote majoritaire
classes, counts = np.unique(voisins, return_counts=True)

En cas d'égalité, np.argmax choisit la premiére occurrence
return classes[np.argmax(counts)]

13

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

Parmi les fonctions de la bibliotheéque Numpy utilisées :

- np.asarray(...) : permet de convertir une liste Python en tableau NumPy
X = np.asarray(X) transforme par exemple une liste de n points [[...],[...],...]
en tableau 2D de forme (n, p).

- np.argsort(..) : ne trie pas les valeurs ; retourne les indices qui trieraient le tableau.
Exemple : sid2 =[0.3, 2.1, 0.1], alors np.argsort(d2) = [2, O, 1]

- np.unique(voisins, return_counts=True) : renvoie les valeurs distinctes triées

et éventuellement combien de fois cette valeur apparait.

Exemple : voisins = [1,1,0,1,0], classes = [0,1] et counts = [2, 3]

- np.argmax(counts) : renvoie l'indice de la plus grande valeur.
Exemple : counts=[2,3] — np.argmax(counts)=1

Concernant np.linalg.norm(..., axis=1) : Calcul la norme sur un axe spécifique.
Si x est (n,p) et z est (p,) alors axis=1 donne un résultat (n,) (nhorme ligne par ligne)
Exemple : X =np.array([[1,2,3],[4,5,6]]) possede une forme (2,3)
np.linalg.norm(X, axis=0) renvoie une forme (3,) : [4.1, 5.4, 6.7]
np.linalg.norm(X, axis=1) renvoie une forme (2,) : [3.7, 8.8]

Dans le programme, np.linalg.norm((X — z), axis=1)**2 réalise I'opération de cette maniere :
- Xauneforme (n, p) : n points de dimension p, forme (n,p)
o Exemple : X =np.array([[1,2],[3,4],[5,6]]) : Trois points de dimension 2 (3,2)
- zestle point a classer, de dimension p, forme (p,)
o Exemple :z=np.array([3,4]) : Point de dimension 2 (2,)

X1 1 2
x2]=[3 4] ;Z2=1[3 4]
X3 5 6

- (X-z):soustrait les composantes de z a chaque point contenu dans x ; c’est un array
de forme (3,2)

1 2 X1 -2 -2 =2
X—z=|3 4|—[3 4]=|x2—2[=]0 0
5 6 X3—2 2 2

X =

- np.linalg.norm((X - z), axis=1) : La fonction calcule la norme sur I'axe 1 (norme ligne
par ligne). Il retourne un résultat de forme (3,) : [2.83, 0, 2.83]

-2 =2 1(=2, =2)ll llxx1 — zIl,
np.linalg.norm(| 0 0 [,axis=1]=| [[(0,0), |=[llx:—zll,
2 2 12,2)]l, llxxs — zll,

On peut voir quelques fois que la norme est élevée au carré (pour respecter I'écriture
usuelle en math ||-]|?). Cela peut se faire avec I'opération **2 qui éléve chaque élément au
carré (élément par élément) :

—2 -2 s — zI1,*| 8
np. linalg.norm ([0 0],axis = 1> wx 2 == |||x, — z||22 = \0]

2 2 lxs —zI1,%| '8

14

COURS : ALGORITHMES POUR L’ INTELLIGENCE ARTIFICIELLE — ALGORITHME KNN

11.9. Algorithme KNN en régression

On considere une régression avec un ensemble d’apprentissage {(x;, ¥i)}i=1.n-

Pour un probleme de régression, on associe a x la moyenne des étiquettes de ses k plus
proches voisins.

Algorithme des k plus proches voisins - régression

KNN_REGRESSION(x) :

1 n
Renvoyer % z Vi
i=1

X; € Ny(x)

Voici une implémentation en Python avec distance euclidienne :

import numpy as np

def KNN_REGRESSION(x,y,z,k):
x=np.array(x)
y=np.array(y)

Liste des normes au carré des z-x[il]
N=np.linalg.norm((z-x),axis=1)**2

Indices des k plus proches voisins
indices_KNN=np.argsort(N)[:k]

voisins=np.array([y[i] for i in indices_KNN])

return np.mean(voisins)

15

