
COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

1

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE
== ALGORITHME KNN ==

I) UN CLASSIFICATEUR OPTIMAL : LE CLASSIFICATEUR DE BAYES .. 2

II) LA MÉTHODE DES K PLUS PROCHES VOISINS (KNN) ... 5

II.1. Principe de fonctionnement .. 5

II.2. Frontière de décision ... 6

II.3. Erreur de généralisation : biais et variance du modèle .. 7

II.4. Taux d’erreur d’apprentissage et de validation .. 9

II.5. Métriques géométriques usuelles ... 10

II.6. Indice et distance de Jaccard... 11

II.7. Comparaison de textes, matrices termes-documents .. 11

II.8. Algorithme KNN en classification .. 13

II.9. Algorithme KNN en régression .. 15

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

2

I) UN CLASSIFICATEUR OPTIMAL : LE CLASSIFICATEUR DE BAYES

Considérons deux densités conditionnelles 𝑓△(𝑥) = 𝑓X|Y=△(𝑥) et 𝑓O(𝑥) = 𝑓X|Y=O(𝑥) (dans

notre exemple, chaque densité est un mélange de deux gaussiennes), décrivant les
probabilités qu’un élément 𝑥 = (𝑥1, 𝑥2)

𝑇 ∈ ℝ2 appartienne à la classe y = « triangle » ou
« cercle » :

𝑓△(𝑥) = ∑ 𝜔△m

2

𝑚=1

𝒩(𝑥; 𝜇△m; Σ△m) 𝑓O(𝑥) = ∑ 𝜔𝑂𝑚

2

𝑚=1

𝒩(𝑥; 𝜇Om; ΣOm)

𝒩(𝑥; 𝜇; Σ) =
1

(2𝜋)√𝑑𝑒𝑡(Σ)
𝑒𝑥𝑝 (−

1

2
(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇))

… avec 𝜔∙m ≥ 0 et ∑ 𝜔∙m∙𝑚 = 1.

(voir https://informatique-f1.fr/jupyterlite/lab/index.html?path=Densites.ipynb pour les
valeurs des paramètres des vecteurs moyennes 𝜇∙m, des matrices de covariance Σ∙met des
poids de mélange 𝜔∙m de cet exemple)

Figure 1 : Densité de probabilité 𝒇

△
(𝒙) et 𝒇

𝑶
(𝒙)

https://informatique-f1.fr/jupyterlite/lab/index.html?path=Densites.ipynb

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

3

On tire maintenant 80 triangles et 80 cercles en suivant les densités de probabilités 𝑓△(𝑥) et
𝑓O(𝑥) :

Figure 2 : Tirage de 80 triangles et 80 cercles selon les densités de probabilités 𝒇

△
(𝒙) et 𝒇

𝑶
(𝒙)

Pour une observation de test 𝑥0 = ((𝑥0)1, (𝑥0)2)

𝑇, la probabilité de classification correcte
est alors maximisée, en moyenne, par un classificateur très simple qui affecte chaque
observation à la classe la plus probable, compte tenu des valeurs de ses caractéristiques
(𝑥0)1 et (𝑥0)2. Autrement dit, il suffit d’affecter à une observation de test 𝑥0, la classe j pour
laquelle la probabilité conditionnelle :

𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0)

… est la plus forte.

Ce classificateur très simple est appelé le classificateur de Bayes. Dans notre problème, où il
n’y a que deux valeurs possibles pour la réponse, le classificateur de Bayes consiste à prédire
la classe « triangle » si 𝑃𝑟(𝑌 = "𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒" | 𝑋 = 𝑥0) > 0.5, et la classe « cercle » sinon.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

4

Pour obtenir la probabilité conditionnelle 𝑃𝑟(𝑌 = △ | 𝑋 = 𝑥0) à partir des densités de
probabilité 𝑓△(𝑥) et 𝑓O(𝑥), on applique la formule de Bayes :

𝑃(𝑌 = △ | 𝑋 ∈ ℬ𝜀(𝑥0)) =
𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 = △) ∙ 𝑃(𝑌 = △)

𝑃(𝑋 ∈ ℬ𝜀(𝑥0))

On définit : 𝑃(𝑌 = △ | 𝑋 = 𝑥0) ∶= lim
𝜀→0
 𝑃(𝑌 = △ | 𝑋 ∈ ℬ𝜀(𝑥0))

= lim
𝜀→0

𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 = △) ∙ 𝑃(𝑌 = △)

𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 = △) ∙ 𝑃(𝑌 = △) + 𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 = O) ∙ 𝑃(𝑌 = O)

Comme les densités conditionnelles 𝑓△(𝑥) et 𝑓O(𝑥) sont continues en 𝑥0, on a :

𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 = 𝑘) ~ 𝑓k(𝑥0) ∙ 𝑉𝑜𝑙(ℬ𝜀(𝑥0))

On obtient donc :

𝑃(𝑌 = △ | 𝑋 = 𝑥0) =
𝑓△(𝑥0) ∙ 𝑃(𝑌 = △)

𝑓△(𝑥0) ∙ 𝑃(𝑌 = △) + 𝑓O(𝑥0) ∙ 𝑃(𝑌 = O)

Dans notre cas, on considère les classes équiprobables : 𝜋△ = 𝜋𝑂 = 0.5. On obtient alors :

𝑃(𝑌 = △ | 𝑋 = 𝑥0) =
𝑓△(𝑥0)

𝑓△(𝑥0) + 𝑓O(𝑥0)

Ainsi, prédire la classe « triangle » si 𝑃(𝑌 = △ | 𝑋 = 𝑥0) > 0.5 revient géométriquement à
tracer une limite sur la condition 𝑓△(𝑥0) = 𝑓O(𝑥0), c’est-à-dire la ligne où les deux surfaces
des densités se croisent.

La ligne violette en pointillés sur la Figure 3 représente cette limite. On l’appelle la frontière
de décision de Bayes. La prédiction du classificateur de Bayes est déterminée par cette
frontière de décision : une observation qui se situe du côté orange de la frontière sera
affectée à la classe orange, et de même une observation située du côté bleu de la frontière
sera affectée à la classe bleue.

Figure 3 : Frontière de décision de Bayes

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

5

Le classificateur de Bayes produit le plus faible taux d’erreur de test possible, appelé le taux
d’erreur de Bayes. Comme le classificateur de Bayes choisira toujours la classe pour laquelle
la probabilité conditionnelle 𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0) est la plus grande, le taux d’erreur en
𝑋 = 𝑥0 sera 1 −𝑚𝑎𝑥𝑗{𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0)}. De façon générale, le taux d’erreur de Bayes

global est donné par :

1 − 𝔼 [max
𝑗
𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0)]

… où l’espérance moyenne cette probabilité sur toutes les valeurs possibles de X. Pour nos
données simulées, le taux d’erreur de Bayes est supérieur à zéro parce que les classes se
chevauchent dans la population réelle pour certaines valeurs de 𝑥0. Le taux d’erreur de
Bayes est analogue à l’erreur irréductible, discutée au chapitre I.3.1.

En théorie, l’idéal serait de toujours prédire des réponses qualitatives à l’aide du
classificateur de Bayes. Mais, avec des données réelles, nous ne connaissons pas les densités
𝑓X|Y=j(𝑥) ni les probabilités a priori 𝜋𝑗 = 𝑃(𝑌 = 𝑗). Par conséquent, la probabilité a

posteriori 𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0) est inconnue.

Le classificateur de Bayes sert de référence idéale inatteignable, à laquelle on compare les
autres méthodes. De nombreuses approches cherchent à estimer la distribution
conditionnelle de Y sachant X, puis à classer une observation donnée dans la classe ayant la
probabilité estimée la plus élevée. Parmi ces méthodes, la méthode des k plus proches
voisins (K-nearest neighbors, KNN) que nous allons étudier maintenant cherche à établir
localement la probabilité a posteriori à partir des voisins d’une observation.

II) LA MÉTHODE DES K PLUS PROCHES VOISINS (KNN)

II.1. Principe de fonctionnement

Étant donné un entier strictement positif k et une observation de test 𝑥0, le classificateur
KNN commence par identifier les k points de l’échantillon d’apprentissage les plus proches
de 𝑥0, notés 𝒩0. La notion de « proximité » dépend d’une distance d(⋅,⋅) choisie sur l’espace
des variables explicatives : géométriquement, 𝒩0 correspond aux points situés dans une
boule centrée en 𝑥0 (au sens de la distance d), de rayon égal à la distance au k-ième plus
proche voisin. Si on appelle 𝑋𝑘 le k-ième plus proche voisin de 𝑥0 :

𝒩0 = {𝑖 ∈ {1, . . . , 𝑛} ∶ 𝑑(𝑋𝑖, 𝑥0) ≤ 𝑑(𝑥0, 𝑋𝑘)}

Il estime ensuite la probabilité conditionnelle d’appartenir à la classe j comme la fraction des
points de 𝒩0 dont la valeur de réponse est égale à j :

𝑃𝑟̂(𝑌 = 𝑗 | 𝑋 = 𝑥0) =
1

𝑘
∑ 𝛿𝑦𝑖,𝑗
𝑖∈𝒩0

 où 𝛿𝑌,𝑗 = {
1, 𝑌 = 𝑗
0, 𝑠𝑖𝑛𝑜𝑛

Dans ce cours, nous utiliserons principalement la distance euclidienne (celle explicitement
au programme), mais d’autres distances seront évoquées par la suite.

Enfin, la méthode KNN affecte l’observation de test 𝑥0 à la classe dont la probabilité estimée
(par l’expression précédente) est la plus élevée. En l’absence d’autres informations, on peut

choisir 𝑘 = ⌊√𝑛⌋, où n est la taille du jeu de données.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

6

Notons que dans l'algorithme des k plus proches voisins, il n'y a pas de phase
d’apprentissage : aucun paramètre n'est appris à partir des données. On dit que k est un
hyperparamètre. Et pour éviter d'avoir deux classes de même cardinal, on choisit souvent
pour k un nombre impair.

La figure ci-contre fournit un exemple illustratif de
l’approche KNN. Sur cette figure est représenté un petit
jeu de données d’apprentissage composé de six
observations bleues et de six observations orange.
L’objectif est de faire une prédiction pour le point indiqué
par la croix noire. Supposons que nous choisissions k = 3.
KNN identifie alors d’abord les trois observations les plus
proches de la croix. Ce voisinage est représenté par un
cercle (distance euclidienne). Il contient deux triangles et
un cercle, ce qui conduit à des probabilités estimées de
2/3 pour la classe triangle et de 1/3 pour la classe
cercle. Par conséquent, KNN prédit que la croix noire appartient à la classe triangle.

II.2. Frontière de décision

Malgré le fait qu’il s’agisse d’une approche très simple, KNN peut souvent produire des
classificateurs étonnamment proches du classificateur de Bayes optimal. La Figure 5
présente la frontière de décision KNN (en trait plein noir), avec k=31, appliquée à notre jeu
de données simulées. On remarque que, même si la vraie distribution n’est pas connue du
classificateur KNN, la frontière de décision KNN est très proche de celle du classificateur de
Bayes. Pour tracer une frontière de décision en 2D, on évalue le classifieur sur une grille de
points (x1, x2) couvrant le domaine d’intérêt, ici [-3,3]×[-3,3].

Figure 5 : Frontière de décision KNN (k=31, distance euclidienne)

Figure 4 : Approche KNN avec k = 3

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

7

Le choix de k a un effet sur le classificateur KNN obtenu. La Figure 6 présente deux
ajustements KNN sur les données simulées, avec k=1 et k=100.

Lorsque k=1, la frontière de décision est excessivement flexible et détecte dans les données
des structures qui ne correspondent pas à la frontière de décision de Bayes. Si on changeait
légèrement les données d’entraînement, la frontière changerait beaucoup car la frontière
est dentelée et dépend fortement du tirage.

À mesure que k augmente, la méthode devient moins flexible et produit une frontière de
décision proche d’une frontière linéaire. Sur ce jeu de données simulées, ni k=1 ni k=100 ne
donnent de bonnes prédictions.

Figure 6 : Frontière de décision KNN vs Bayes (k=1 et k=100)

II.3. Erreur de généralisation : biais et variance du modèle

Nous avons vu en page 7 que l’erreur quadratique moyenne de prédiction est composée
d’une erreur réductible et d’une erreur irréductible (page 7) :

𝔼 [(𝑌 − 𝑓(𝑋))
2

] = 𝔼 [(𝑓(𝑋) − 𝑓(𝑋))
2

]
⏟

𝑅é𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

+ 𝑉𝑎𝑟(𝜀)⏟
𝐼𝑟𝑟é𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

Ici, f est une fonction fixe mais inconnue de X = (X1, X2, …, Xp) et ε est un terme d’erreur
aléatoire, indépendant de X et de moyenne nulle. On avait supposé la fonction de prédiction

𝑓 et l’ensemble des prédicteurs X tous deux fixés, de sorte que la seule variabilité provienne
de l’erreur aléatoire ε.

On peut maintenant aller plus loin : en pratique, la fonction apprise 𝑓 n’est pas fixe, car elle
dépend du jeu d’entraînement : si on répète l’apprentissage sur un autre échantillon, on
obtient en général un modèle différent. Nous allons introduire l’erreur de généralisation, qui
doit donc intégrer cette nouvelle source de variabilité. Cela va conduire à décomposer
l’erreur réductible en deux contributions : le biais du modèle (erreur systématique) et sa
variance (sensibilité aux données).

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

8

On note 𝔼𝒟 l’espérance sur les jeux de données 𝒟 et on suppose toujours 𝑌 = 𝑓(𝑋) + 𝜀 et

𝔼[𝜀] = 0. Pour un x fixé, 𝑓(𝑥) dépend du jeu d’entraînement 𝒟 et on peut montrer que
l’erreur quadratique moyenne sur la prédiction peut se décomposer en trois termes :

𝔼𝒟 [(𝑌 − 𝑓(𝑥))
2

| 𝑋 = 𝑥] = (𝔼[𝑓(𝑥)] − 𝑓(𝑥))
2

⏟
𝑏𝑖𝑎𝑖𝑠2

+ 𝑉𝑎𝑟 (𝑓(𝑥))⏟
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

+ 𝑉𝑎𝑟(𝜀)⏟
𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

Dans le contexte KNN (et plus largement en apprentissage statistique), le biais et la variance
décrivent deux composantes de l’erreur de généralisation liées à l’apprentissage à partir
d’un échantillon d’entraînement :

- La moyenne des modèles 𝔼[𝑓] peut être systématiquement décalée par rapport à 𝑓 :

c’est le biais ;

- Le modèle 𝑓 change si on change l’échantillon d’apprentissage. C’est cette variabilité
qui engendre la variance.

Sur la Figure 7, on fixe le modèle, puis on tire 20 jeux d’entraînement différents (80 triangles
+ 80 cercles). Pour chaque jeu, on calcule la frontière KNN et on superpose les 20 frontières.
On compare ensuite k=1 et k=50. On ajoute la frontière de Bayes en pointillés violets.

Pour k=1, on observe davantage de frontières « dentelées » qui changent beaucoup d’un
tirage à l’autre. C’est la signature d’une variance élevée : le modèle dépend fortement des
points exacts de l’échantillon.

Pour k=50, les 20 frontières sont beaucoup plus regroupées : la variance est plus faible. Mais
elles peuvent être systématiquement décalées par rapport à la frontière de Bayes. Ce
décalage « systématique » correspond au biais : la règle est trop lissée pour suivre la vraie
structure locale.

Figure 7 : Illustration de l'effet de k sur le biais et la variance du modèle

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

9

II.4. Taux d’erreur d’apprentissage et de validation

Il n’existe pas de relation forte entre le taux d’erreur d’apprentissage et le taux d’erreur de
test. Avec k=1, le taux d’erreur d’apprentissage de KNN est nul, mais le taux d’erreur de test
peut être assez élevé. De manière générale, lorsque l’on utilise des méthodes de
classification plus flexibles, le taux d’erreur d’apprentissage diminue, mais le taux d’erreur
de test ne diminue pas nécessairement.

La figure représente les erreurs de test et d’apprentissage de KNN en fonction de 1/k.
Lorsque 1/k augmente, la méthode devient plus flexible. Le taux d’erreur d’apprentissage
diminue systématiquement à mesure que la flexibilité augmente. En revanche, l’erreur de
test présente une forme caractéristique en U : elle diminue d’abord (avec un minimum aux
alentours de K=31), puis augmente de nouveau lorsque la méthode devient excessivement
flexible et sur-ajuste les données.

Quand k diminue, le modèle devient plus flexible : il « colle » davantage aux données. À
l’extrême, k=1 mémorise l’échantillon : chaque point est son propre plus proche voisin, donc
l’erreur d’apprentissage tombe à zéro. Cela ne signifie pas que le modèle généralise bien.

L’erreur de test a souvent une forme en U car deux effets antagonistes coexistent (biais –
variance). Lorsque k est grand (donc 1/k petit), la décision est très lissée et le modèle est
rigide. Le biais est élevé, ce qui entraîne un sous-ajustement et une erreur de test élevée.
Lorsque k est très petit (donc 1/k grand), la décision est très instable et la variance élevée.
Cela entraîne un surajustement (overfitting) et les erreurs de test remontent.

Figure 8 : Erreur d'apprentissage et de test en fonction de 1/k

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

10

II.5. Métriques géométriques usuelles

Changer la distance utilisée pour regrouper les voisins d’une observation peut changer
fortement la frontière. Voici par exemple trois distances naturelles qui peuvent être utilisées
avec KNN dès que les observations sont des vecteurs réels. Ces distances sont sensibles à
l’échelle des variables : il faut souvent normaliser les données.

Pour deux points 𝑥 = (𝑥1, . . . , 𝑥𝑝) et 𝑧 = (𝑧1, . . . , 𝑧𝑝) dans ℝ𝑝 :

- Distance L1 (Manhattan) :

𝑑1(𝑥, 𝑧) = ‖𝑥 − 𝑧‖1 =∑|𝑥𝑗 − 𝑧𝑗|

𝑝

𝑗=1

- Distance L2 (Euclidienne) :

𝑑2(𝑥, 𝑧) = ‖𝑥 − 𝑧‖2 = √∑(𝑥𝑗 − 𝑧𝑗)
2

𝑝

𝑗=1

- Distance L (Chebyshev) :

𝑑∞(𝑥, 𝑧) = ‖𝑥 − 𝑧‖∞ = max
1≤𝑗≤𝑝

|𝑥𝑗 − 𝑧𝑗|

Figure 9 : Distances L2, L1 et L

Ces distances usuelles sont utilisées dans les problèmes numériques ou qui ont une
modélisation géométrique, mais elles ne sont pas adaptées à toutes les situations. On peut
alors utiliser d’autres mesures ou indices de similarité dont quelques exemples sont donnés
dans les paragraphes suivants.

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

11

II.6. Indice et distance de Jaccard

On définit l’indice de Jaccard comme une mesure de similarité entre deux ensembles finis A
et B (l’un d’eux étant non vide) en posant :

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 𝑞𝑢𝑖 𝑎 𝑙𝑒𝑠 𝑝𝑟𝑜𝑝𝑟𝑖é𝑡é𝑠 {

0 ≤ 𝐽(𝐴, 𝐵) ≤ 1
𝐽(𝐴, 𝐵) = 1 ⇔ 𝐴 = 𝐵

𝐽(𝐴, 𝐵) = 0 ⇔ 𝐴 ∩ 𝐵 = ∅

On peut lui associer la distance de Jaccard, définie par :

𝑑𝐽(𝐴, 𝐵) = 1 − 𝐽(𝐴, 𝐵) = 1 −
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=
|𝐴 ∆ 𝐵|

|𝐴 ∪ 𝐵|

… où 𝐴 ∆ 𝐵 désigne la différence symétrique entre A et B : 𝐴 ∆ 𝐵 = (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵)

Cet indice intervient lorsqu’on souhaite comparer des éléments caractérisés par des
attributs booléens/binaires (présence ou non de certaines propriétés).

Supposons que nous voulions comparer des individus selon qu’ils possèdent ou non des
propriétés 𝑃𝑖, i = {0,1,2,3,4}. Chaque individu est représenté par un vecteur de {0,1}𝑛 avec
𝑥𝑖 = 1 si et seulement si 𝑃𝑖(𝑥) :

𝑋 =

[

1
1
0
1
0]

  ne vérifie pas 𝑃2, 𝑌 =

[

0
1
1
0
0]

  vérifie 𝑃2

Ici, 𝐴 = {0,1,3} et 𝐵 = {1,2} donc 𝐴 ∩ 𝐵 = {1} et 𝐴 ∪ 𝐵 = {0,1,2,3} et l’indice de Jaccard
vaut :

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=
1

4
= 0,25

La distance de Jaccard vaut :

𝑑𝐽(𝐴, 𝐵) = 1 − 𝐽(𝐴, 𝐵) = 0,75

La distance de Jaccard est nulle lorsque les vecteurs X et Y sont identiques, égale à 1 lorsque
∀𝑖, 𝑥𝑖 ≠ 𝑦𝑖.

II.7. Comparaison de textes, matrices termes-documents

Pour évaluer la proximité entre documents textes issus d’un même corpus on commence par
en donner une représentation sommaire en repérant les mots utiles du corpus et en
associant à chaque document Dj un vecteur colonne Xj dont le terme Xi,j dépend de la

fréquence du mot ou du terme ti dans le document et dans le corpus 𝒞.

Le nombre d’occurrences du terme pourrait servir à comparer grossièrement des documents
de même taille, mais on préfère le plus souvent le codage TF-IDF (TF : fréquence ou plutôt

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

12

nombre d’occurrences des termes dans les documents, IDF : inverse du nombre de
documents contenant un terme) défini par les formules :

𝑥𝑖,𝑗 = 𝑡𝑓𝑡𝑖,𝑑𝑗⏟
𝑇𝐹

× 𝑙𝑛
|𝒞|

𝑑𝑓𝑡𝑖⏟
𝐼𝐷𝐹

 𝑎𝑣𝑒𝑐 {
𝑡𝑓𝑡𝑖,𝑑𝑗 : 𝑓𝑟é𝑞𝑢𝑒𝑛𝑐𝑒 𝑑𝑒 𝑡𝑖 𝑑𝑎𝑛𝑠 𝑙𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐷𝑗

𝑑𝑓𝑡𝑖 ∶ 𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑒𝑛𝑎𝑛𝑡 𝑡𝑖

Un indice de similarité entre deux documents est alors donné par la similarité cosinus définie
comme le cosinus de l’angle entre Xj et Xk comme vecteurs de ℝ𝑛 avec n la taille du lexique

retenu (de quelques milliers à quelques dizaines de milliers de termes en pratique) :

𝑠𝑖𝑚(𝐷𝑗 , 𝐷𝑘) =
∑ 𝑥𝑖,𝑗𝑥𝑖,𝑘𝑖

‖𝑋𝑗‖2
‖𝑋𝑘‖2

=
〈𝑋𝑗, 𝑋𝑘〉

‖𝑋𝑗‖2
‖𝑋𝑘‖2

Dans le cas où le terme ti est présent dans tous les documents, on a alors 𝑑𝑓𝑡𝑖 = |𝒞|, et donc

son IDF vaut 0 et xi,j = 0. Ce serait le cas avec les mots courants de la langue, articles,

prépositions, auxiliaires que l’on évite systématiquement de prendre en compte (mots-vides
ou stop-words en anglais).

Dans le cas où le terme ti n’est présent que dans un seul document Dj, on a 𝑑𝑓𝑡𝑖 = 1. Ainsi le

coefficient de 𝑡𝑓𝑡𝑖,𝑑𝑗 dans 𝑥𝑖,𝑗 prend la valeur maximale et 𝑥𝑖,𝑗 = 𝑡𝑓𝑡𝑖,𝑑𝑗𝑙𝑛|𝒞|.

Si on pose 𝛿(Dj, Dk) = 1 − 𝑠𝑖𝑚(𝐷𝑗 , 𝐷𝑘), alors si 𝛿(Dj, Dk) = 0 cela signifie que

𝑠𝑖𝑚(𝐷𝑗 , 𝐷𝑘) = 1 et donc que les deux vecteurs sont proportionnels. Donc pour tout indice i

qui correspond au même terme ti, on a :

𝑘 =
𝑥𝑖,𝑗

𝑥𝑖,𝑘
=

𝑡𝑓𝑡𝑖,𝑑𝑗 × 𝑙𝑛
|𝒞|
𝑑𝑓𝑡𝑖

𝑡𝑓𝑡𝑖,𝑑𝑘 × 𝑙𝑛
|𝒞|
𝑑𝑓𝑡𝑖

=
𝑡𝑓𝑡𝑖,𝑑𝑗
𝑡𝑓𝑡𝑖,𝑑𝑘

Cela signifie que les occurrences des mots dans les deux documents sont proportionnelles,
comme par exemple si 𝐷𝑗 = « Bonjour à toi. » et 𝐷𝑘 = « Bonjour à toi. À toi, Bonjour ! ».

Prenons l’exemple suivant composé de trois documents : 𝐷1 = « chat mange poisson » ;
𝐷2 = « chien mange os » et 𝐷3 = « chat chat mange ».
Le vocabulaire associé est : [chat, chien, mange, poisson, os].

Les fréquences des termes : 𝑡𝑓𝑡𝑖,𝑑1 = (1,0,1,1,0), 𝑡𝑓𝑡𝑖,𝑑2 = (0,1,1,0,1) et 𝑡𝑓𝑡𝑖,𝑑3 = (2,0,1,0,0)

Nombre de documents contenant les termes : 𝑑𝑓𝑡𝑖 = (2,1,3,1,1)

𝑥1 = 𝑡𝑓𝑡𝑖,𝑑1 × 𝑙𝑛
|𝒞|

𝑑𝑓𝑡𝑖
= 𝑡𝑓𝑡𝑖,𝑑1 × 𝑙𝑛

3

(2,1,3,1,1)

 = 𝑡𝑓𝑡𝑖,𝑑1 × (0.405, 1.0986, 0, 1.0986 , 1.0986)

 = (1, 0, 1, 1, 0) ∙ (0.405, 1.0986, 0, 1.0986 , 1.0986) = (0.405, 0, 0, 1.0986, 0)
𝑥2 = (0, 1, 1, 0, 1) ∙ (0.405, 1.0986, 0, 1.0986 , 1.0986) = (0, 1,0986, 0, 0, 1.0986)
𝑥3 = (2, 0, 1, 0, 0) ∙ (0.405, 1.0986, 0, 1.0986 , 1.0986) = (0.8109, 0, 0, 0, 0)

• 𝑠𝑖𝑚(𝐷1, 𝐷2) =
〈𝑋1,𝑋2〉

‖𝑋1‖2‖𝑋2‖2
= 0 : le seul mot commun est « mange » mais comme il est

présent partout, son IDF vaut 0 et il ne contribue pas au TF-IDF.

• 𝑠𝑖𝑚(𝐷1, 𝐷3) = 0.345 ; 𝑠𝑖𝑚(𝐷2, 𝐷3) =0 : le seul mot commun est « mange »

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

13

II.8. Algorithme KNN en classification

On utilisera ici les notations argmax et argmin : étant donné des réels a1, . . . , a𝑝, la notation

argmax
𝑗 ∈ ⟦1,𝑝⟧

 a𝑗 ou argmax(a1, . . . , a𝑝) désigne un indice 𝑗0 ∈ ⟦1, 𝑝⟧ tel que max
𝑗 ∈ ⟦1,𝑝⟧

 a𝑗 = 𝑎𝑗0. La

notation argmin est définie de manière analogue.

On considère une classification multi-classes avec K classes c1, c2, …, cp, un ensemble de test
{(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛.

Algorithme des k plus proches voisins - classification

KNN_CLASSIFICATION(x) :

Renvoyer argmax
𝑗 ∈ ⟦1,𝑝⟧

|{𝑖 ∈ ⟦1, 𝑛⟧ ∶ 𝑥𝑖 ∈ 𝒩𝑘(𝑥) 𝑒𝑡 𝑦𝑖 = 𝑗}|

Voici une implémentation en Python avec distance euclidienne :

import numpy as np
 """
 X : array-like, shape (n, p)
 Données d'entraînement (n points en dimension p).
 y : array-like, shape (n,)
 Étiquettes d'entraînement.
 z : array-like, shape (p,)
 Point à classer.
 k : int
 Nombre de plus proches voisins (1 <= k <= n).

 y_pred : même type que y, classe prédite pour z.
 """
def knn_classification(X, y, z, k):
 X = np.asarray(X)
 y = np.asarray(y)
 z = np.asarray(z)

 # Normes euclidiennes
 d2 = np.linalg.norm((X - z), axis=1) # shape (n,)

 # Indices des k plus proches voisins
 idx = np.argsort(d2)[:k] # shape (k,)

 # Labels des voisins
 voisins = y[idx]

 # Vote majoritaire
 classes, counts = np.unique(voisins, return_counts=True)

 # En cas d'égalité, np.argmax choisit la première occurrence
 return classes[np.argmax(counts)]

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

14

Parmi les fonctions de la bibliothèque Numpy utilisées :
- np.asarray(...) : permet de convertir une liste Python en tableau NumPy

X = np.asarray(X) transforme par exemple une liste de n points [[...],[...],...]
en tableau 2D de forme (n, p).

- np.argsort(…) : ne trie pas les valeurs ; retourne les indices qui trieraient le tableau.
Exemple : si d2 = [0.3, 2.1, 0.1], alors np.argsort(d2) = [2, 0, 1]

- np.unique(voisins, return_counts=True) : renvoie les valeurs distinctes triées
et éventuellement combien de fois cette valeur apparait.

Exemple : voisins = [1,1,0,1,0], classes = [0,1] et counts = [2, 3]
- np.argmax(counts) : renvoie l’indice de la plus grande valeur.

Exemple : counts=[2,3] → np.argmax(counts)=1

Concernant np.linalg.norm(..., axis=1) : Calcul la norme sur un axe spécifique.

Si x est (n,p) et z est (p,) alors axis=1 donne un résultat (n,) (norme ligne par ligne)
Exemple : X = np.array([[1,2,3],[4,5,6]]) possède une forme (2,3)

np.linalg.norm(X, axis=0) renvoie une forme (3,) : [4.1, 5.4, 6.7]
np.linalg.norm(X, axis=1) renvoie une forme (2,) : [3.7, 8.8]

Dans le programme, np.linalg.norm((X – z), axis=1)**2 réalise l’opération de cette manière :

- X a une forme (n, p) : n points de dimension p, forme (n,p)
o Exemple : X = np.array([[1,2],[3,4],[5,6]]) : Trois points de dimension 2 (3,2)

- z est le point à classer, de dimension p, forme (p,)
o Exemple : z = np.array([3,4]) : Point de dimension 2 (2,)

𝑋 = [

𝑥1
𝑥2
𝑥3
] = [

1 2
3 4
5 6

] ; 𝑧 = [3 4]

- (X - z) : soustrait les composantes de z à chaque point contenu dans x ; c’est un array
de forme (3,2)

𝑋 − 𝑧 = [
1 2
3 4
5 6

] − [3 4] = [

𝑥1 − 𝑧
𝑥2 − 𝑧
𝑥3 − 𝑧

] = [
−2 −2
0 0
2 2

]

- np.linalg.norm((X - z), axis=1) : La fonction calcule la norme sur l’axe 1 (norme ligne

par ligne). Il retourne un résultat de forme (3,) : [2.83, 0, 2.83]

𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚 ([
−2 −2
0 0
2 2

] , 𝑎𝑥𝑖𝑠 = 1) = [

‖(−2,−2)‖2
‖(0,0)‖2
‖(2,2)‖2

] = [

‖𝑥1 − 𝑧‖2
‖𝑥2 − 𝑧‖2
‖𝑥3 − 𝑧‖2

]

On peut voir quelques fois que la norme est élevée au carré (pour respecter l’écriture
usuelle en math ‖∙‖2). Cela peut se faire avec l’opération **2 qui élève chaque élément au
carré (élément par élément) :

𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚([
−2 −2
0 0
2 2

] , 𝑎𝑥𝑖𝑠 = 1) ∗∗ 2 == [

‖𝑥1 − 𝑧‖2
2

‖𝑥2 − 𝑧‖2
2

‖𝑥3 − 𝑧‖2
2

] = [
8
0
8
]

COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN

15

II.9. Algorithme KNN en régression

On considère une régression avec un ensemble d’apprentissage {(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛.

Pour un problème de régression, on associe à x la moyenne des étiquettes de ses k plus
proches voisins.

Algorithme des k plus proches voisins - régression

KNN_REGRESSION(x) :

Renvoyer

Voici une implémentation en Python avec distance euclidienne :

import numpy as np
 """
 X : array-like, shape (n, p)
 Données d'entraînement (n points en dimension p).
 y : array-like, shape (n,)
 Étiquettes d'entraînement.
 z : array-like, shape (p,)
 Point à classer.
 k : int
 Nombre de plus proches voisins (1 <= k <= n).

 y_pred : même type que y, valeur prédite pour z.
 """
def KNN_REGRESSION(x,y,z,k):
 x=np.array(x)
 y=np.array(y)

 # Liste des normes au carré des z-x[i]
 N=np.linalg.norm((z-x),axis=1)**2

 # Indices des k plus proches voisins
 indices_KNN=np.argsort(N)[:k]

 voisins=np.array([y[i] for i in indices_KNN])

 return np.mean(voisins)

1

𝑘
 ∑𝑦𝑖

𝑛

𝑖=1
𝑥𝑖 ∈ 𝒩𝑘(𝑥)

