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I) UN CLASSIFICATEUR OPTIMAL : LE CLASSIFICATEUR DE BAYES 

Considérons deux densités conditionnelles 𝑓△(𝑥) = 𝑓X|Y=△(𝑥) et 𝑓O(𝑥) = 𝑓X|Y=O(𝑥) (dans 

notre exemple, chaque densité est un mélange de deux gaussiennes), décrivant les 
probabilités qu’un élément 𝑥 = (𝑥1, 𝑥2)

𝑇 ∈ ℝ2 appartienne à la classe y = « triangle » ou 
« cercle » : 

𝑓△(𝑥) = ∑ 𝜔△m

2

𝑚=1

𝒩(𝑥; 𝜇△m; Σ△m)                 𝑓O(𝑥) = ∑ 𝜔𝑂𝑚

2

𝑚=1

𝒩(𝑥; 𝜇Om; ΣOm) 

𝒩(𝑥; 𝜇; Σ) =
1

(2𝜋)√𝑑𝑒𝑡(Σ)
𝑒𝑥𝑝 (−

1

2
(𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇)) 

… avec 𝜔∙m ≥ 0 et  ∑ 𝜔∙m∙𝑚 = 1. 

(voir https://informatique-f1.fr/jupyterlite/lab/index.html?path=Densites.ipynb pour les 
valeurs des paramètres des vecteurs moyennes 𝜇∙m, des matrices de covariance Σ∙met des 
poids de mélange 𝜔∙m de cet exemple) 

 

 
Figure 1 : Densité de probabilité 𝒇

△
(𝒙) et 𝒇

𝑶
(𝒙) 

https://informatique-f1.fr/jupyterlite/lab/index.html?path=Densites.ipynb
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On tire maintenant 80 triangles et 80 cercles en suivant les densités de probabilités 𝑓△(𝑥) et 
𝑓O(𝑥) : 
 

 

 
Figure 2 : Tirage de 80 triangles et 80 cercles selon les densités de probabilités 𝒇

△
(𝒙) et 𝒇

𝑶
(𝒙) 

 
Pour une observation de test 𝑥0 = ((𝑥0)1, (𝑥0)2)

𝑇, la probabilité de classification correcte 
est alors maximisée, en moyenne, par un classificateur très simple qui affecte chaque 
observation à la classe la plus probable, compte tenu des valeurs de ses caractéristiques 
(𝑥0)1 et (𝑥0)2. Autrement dit, il suffit d’affecter à une observation de test 𝑥0, la classe j pour 
laquelle la probabilité conditionnelle : 

𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0) 

… est la plus forte. 
 
Ce classificateur très simple est appelé le classificateur de Bayes. Dans notre problème, où il 
n’y a que deux valeurs possibles pour la réponse, le classificateur de Bayes consiste à prédire 
la classe « triangle » si 𝑃𝑟(𝑌 = "𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒" | 𝑋 = 𝑥0) > 0.5, et la classe « cercle » sinon. 
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Pour obtenir la probabilité conditionnelle 𝑃𝑟(𝑌 = △ | 𝑋 = 𝑥0) à partir des densités de 
probabilité 𝑓△(𝑥) et 𝑓O(𝑥), on applique la formule de Bayes : 

𝑃(𝑌 = △ | 𝑋 ∈ ℬ𝜀(𝑥0)) =
𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 = △) ∙ 𝑃(𝑌 = △)

𝑃(𝑋 ∈ ℬ𝜀(𝑥0))
 

On définit : 𝑃(𝑌 = △ | 𝑋 = 𝑥0) ∶= lim
𝜀→0
 𝑃(𝑌 = △ | 𝑋 ∈ ℬ𝜀(𝑥0)) 

= lim
𝜀→0

 
𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 = △) ∙ 𝑃(𝑌 = △)

𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 = △) ∙ 𝑃(𝑌 = △) + 𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 =  O) ∙ 𝑃(𝑌 =  O)
 

Comme les densités conditionnelles 𝑓△(𝑥) et 𝑓O(𝑥) sont continues en 𝑥0, on a :  

𝑃(𝑋 ∈ ℬ𝜀(𝑥0) | 𝑌 =  𝑘) ~ 𝑓k(𝑥0) ∙ 𝑉𝑜𝑙(ℬ𝜀(𝑥0)) 

On obtient donc : 

𝑃(𝑌 = △ | 𝑋 = 𝑥0) =
𝑓△(𝑥0) ∙ 𝑃(𝑌 = △)

𝑓△(𝑥0) ∙ 𝑃(𝑌 = △) + 𝑓O(𝑥0) ∙ 𝑃(𝑌 =  O)
 

Dans notre cas, on considère les classes équiprobables : 𝜋△ = 𝜋𝑂 = 0.5. On obtient alors : 

𝑃(𝑌 = △ | 𝑋 = 𝑥0) =
𝑓△(𝑥0)

𝑓△(𝑥0) + 𝑓O(𝑥0)
 

Ainsi, prédire la classe « triangle » si 𝑃(𝑌 = △ | 𝑋 = 𝑥0) > 0.5 revient géométriquement à 
tracer une limite sur la condition 𝑓△(𝑥0) = 𝑓O(𝑥0), c’est-à-dire la ligne où les deux surfaces 
des densités se croisent. 
 
La ligne violette en pointillés sur la Figure 3 représente cette limite. On l’appelle la frontière 
de décision de Bayes. La prédiction du classificateur de Bayes est déterminée par cette 
frontière de décision : une observation qui se situe du côté orange de la frontière sera 
affectée à la classe orange, et de même une observation située du côté bleu de la frontière 
sera affectée à la classe bleue. 

 
Figure 3 : Frontière de décision de Bayes 
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Le classificateur de Bayes produit le plus faible taux d’erreur de test possible, appelé le taux 
d’erreur de Bayes. Comme le classificateur de Bayes choisira toujours la classe pour laquelle 
la probabilité conditionnelle 𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0) est la plus grande, le taux d’erreur en     
𝑋 = 𝑥0 sera 1 −𝑚𝑎𝑥𝑗{𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0)}. De façon générale, le taux d’erreur de Bayes 

global est donné par : 

1 − 𝔼 [max
𝑗
𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0)] 

… où l’espérance moyenne cette probabilité sur toutes les valeurs possibles de X. Pour nos 
données simulées, le taux d’erreur de Bayes est supérieur à zéro parce que les classes se 
chevauchent dans la population réelle pour certaines valeurs de 𝑥0. Le taux d’erreur de 
Bayes est analogue à l’erreur irréductible, discutée au chapitre I.3.1. 
 
En théorie, l’idéal serait de toujours prédire des réponses qualitatives à l’aide du 
classificateur de Bayes. Mais, avec des données réelles, nous ne connaissons pas les densités 
𝑓X|Y=j(𝑥) ni les probabilités a priori 𝜋𝑗 = 𝑃(𝑌 =  𝑗). Par conséquent, la probabilité a 

posteriori 𝑃𝑟(𝑌 = 𝑗 | 𝑋 = 𝑥0) est inconnue. 
 
Le classificateur de Bayes sert de référence idéale inatteignable, à laquelle on compare les 
autres méthodes. De nombreuses approches cherchent à estimer la distribution 
conditionnelle de Y sachant X, puis à classer une observation donnée dans la classe ayant la 
probabilité estimée la plus élevée. Parmi ces méthodes, la méthode des k plus proches 
voisins (K-nearest neighbors, KNN) que nous allons étudier maintenant cherche à établir 
localement la probabilité a posteriori à partir des voisins d’une observation. 

II) LA MÉTHODE DES K PLUS PROCHES VOISINS (KNN) 

II.1. Principe de fonctionnement 

Étant donné un entier strictement positif k et une observation de test 𝑥0, le classificateur 
KNN commence par identifier les k points de l’échantillon d’apprentissage les plus proches 
de 𝑥0, notés 𝒩0. La notion de « proximité » dépend d’une distance d(⋅,⋅) choisie sur l’espace 
des variables explicatives : géométriquement, 𝒩0 correspond aux points situés dans une 
boule centrée en 𝑥0 (au sens de la distance d), de rayon égal à la distance au k-ième plus 
proche voisin. Si on appelle 𝑋𝑘 le k-ième plus proche voisin de 𝑥0 : 

𝒩0 = {𝑖 ∈ {1, . . . , 𝑛} ∶ 𝑑(𝑋𝑖, 𝑥0) ≤ 𝑑(𝑥0, 𝑋𝑘)} 

Il estime ensuite la probabilité conditionnelle d’appartenir à la classe j comme la fraction des 
points de 𝒩0 dont la valeur de réponse est égale à j : 

𝑃𝑟̂(𝑌 = 𝑗 | 𝑋 = 𝑥0) =
1

𝑘
∑ 𝛿𝑦𝑖,𝑗
𝑖∈𝒩0

                où 𝛿𝑌,𝑗 = {
1, 𝑌 = 𝑗
0, 𝑠𝑖𝑛𝑜𝑛

  

Dans ce cours, nous utiliserons principalement la distance euclidienne (celle explicitement 
au programme), mais d’autres distances seront évoquées par la suite. 
 
Enfin, la méthode KNN affecte l’observation de test 𝑥0 à la classe dont la probabilité estimée 
(par l’expression précédente) est la plus élevée. En l’absence d’autres informations, on peut 

choisir 𝑘 = ⌊√𝑛⌋, où n est la taille du jeu de données. 
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Notons que dans l'algorithme des k plus proches voisins, il n'y a pas de phase 
d’apprentissage : aucun paramètre n'est appris à partir des données. On dit que k est un 
hyperparamètre. Et pour éviter d'avoir deux classes de même cardinal, on choisit souvent 
pour k un nombre impair. 
 
La figure ci-contre fournit un exemple illustratif de 
l’approche KNN. Sur cette figure est représenté un petit 
jeu de données d’apprentissage composé de six 
observations bleues et de six observations orange. 
L’objectif est de faire une prédiction pour le point indiqué 
par la croix noire. Supposons que nous choisissions k = 3. 
KNN identifie alors d’abord les trois observations les plus 
proches de la croix. Ce voisinage est représenté par un 
cercle (distance euclidienne). Il contient deux triangles et 
un cercle, ce qui conduit à des probabilités estimées de 
2/3 pour la classe triangle et de 1/3 pour la classe 
cercle. Par conséquent, KNN prédit que la croix noire appartient à la classe triangle. 
 

II.2. Frontière de décision 

Malgré le fait qu’il s’agisse d’une approche très simple, KNN peut souvent produire des 
classificateurs étonnamment proches du classificateur de Bayes optimal. La Figure 5 
présente la frontière de décision KNN (en trait plein noir), avec k=31, appliquée à notre jeu 
de données simulées. On remarque que, même si la vraie distribution n’est pas connue du 
classificateur KNN, la frontière de décision KNN est très proche de celle du classificateur de 
Bayes. Pour tracer une frontière de décision en 2D, on évalue le classifieur sur une grille de 
points (x1, x2) couvrant le domaine d’intérêt, ici [-3,3]×[-3,3]. 

 
Figure 5 : Frontière de décision KNN (k=31, distance euclidienne) 

Figure 4 : Approche KNN avec k = 3 
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Le choix de k a un effet sur le classificateur KNN obtenu. La Figure 6 présente deux 
ajustements KNN sur les données simulées, avec k=1 et k=100. 
 
Lorsque k=1, la frontière de décision est excessivement flexible et détecte dans les données 
des structures qui ne correspondent pas à la frontière de décision de Bayes. Si on changeait 
légèrement les données d’entraînement, la frontière changerait beaucoup car la frontière 
est dentelée et dépend fortement du tirage.  
 
À mesure que k augmente, la méthode devient moins flexible et produit une frontière de 
décision proche d’une frontière linéaire. Sur ce jeu de données simulées, ni k=1 ni k=100 ne 
donnent de bonnes prédictions. 

 
Figure 6 : Frontière de décision KNN vs Bayes (k=1 et k=100) 

II.3. Erreur de généralisation : biais et variance du modèle 

Nous avons vu en page 7 que l’erreur quadratique moyenne de prédiction est composée 
d’une erreur réductible et d’une erreur irréductible (page 7) : 

𝔼 [(𝑌 − 𝑓(𝑋))
2

] = 𝔼 [(𝑓(𝑋) − 𝑓(𝑋))
2

]
⏟            

𝑅é𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

+ 𝑉𝑎𝑟(𝜀)⏟    
𝐼𝑟𝑟é𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

 

Ici, f est une fonction fixe mais inconnue de X = (X1, X2, …, Xp) et ε est un terme d’erreur 
aléatoire, indépendant de X et de moyenne nulle. On avait supposé la fonction de prédiction 

𝑓 et l’ensemble des prédicteurs X tous deux fixés, de sorte que la seule variabilité provienne 
de l’erreur aléatoire ε. 
 

On peut maintenant aller plus loin : en pratique, la fonction apprise 𝑓 n’est pas fixe, car elle 
dépend du jeu d’entraînement : si on répète l’apprentissage sur un autre échantillon, on 
obtient en général un modèle différent. Nous allons introduire l’erreur de généralisation, qui 
doit donc intégrer cette nouvelle source de variabilité. Cela va conduire à décomposer 
l’erreur réductible en deux contributions : le biais du modèle (erreur systématique) et sa 
variance (sensibilité aux données). 
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On note 𝔼𝒟 l’espérance sur les jeux de données 𝒟 et on suppose toujours 𝑌 = 𝑓(𝑋) + 𝜀 et 

𝔼[𝜀] = 0. Pour un x fixé, 𝑓(𝑥) dépend du jeu d’entraînement 𝒟 et on peut montrer que 
l’erreur quadratique moyenne sur la prédiction peut se décomposer en trois termes : 

𝔼𝒟 [(𝑌 − 𝑓(𝑥))
2

| 𝑋 = 𝑥] = (𝔼[𝑓(𝑥)] − 𝑓(𝑥))
2

⏟            
𝑏𝑖𝑎𝑖𝑠2

+ 𝑉𝑎𝑟 (𝑓(𝑥))⏟      
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

+ 𝑉𝑎𝑟(𝜀)⏟    
𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑏𝑙𝑒

 

Dans le contexte KNN (et plus largement en apprentissage statistique), le biais et la variance 
décrivent deux composantes de l’erreur de généralisation liées à l’apprentissage à partir 
d’un échantillon d’entraînement : 

- La moyenne des modèles 𝔼[𝑓] peut être systématiquement décalée par rapport à 𝑓 : 

c’est le biais ; 

- Le modèle 𝑓 change si on change l’échantillon d’apprentissage. C’est cette variabilité 
qui engendre la variance. 

 
Sur la Figure 7, on fixe le modèle, puis on tire 20 jeux d’entraînement différents (80 triangles 
+ 80 cercles). Pour chaque jeu, on calcule la frontière KNN et on superpose les 20 frontières. 
On compare ensuite k=1 et k=50. On ajoute la frontière de Bayes en pointillés violets. 
 
Pour k=1, on observe davantage de frontières « dentelées » qui changent beaucoup d’un 
tirage à l’autre. C’est la signature d’une variance élevée : le modèle dépend fortement des 
points exacts de l’échantillon. 
 
Pour k=50, les 20 frontières sont beaucoup plus regroupées : la variance est plus faible. Mais 
elles peuvent être systématiquement décalées par rapport à la frontière de Bayes. Ce 
décalage « systématique » correspond au biais : la règle est trop lissée pour suivre la vraie 
structure locale. 
 

 
Figure 7 : Illustration de l'effet de k sur le biais et la variance du modèle 
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II.4. Taux d’erreur d’apprentissage et de validation 

Il n’existe pas de relation forte entre le taux d’erreur d’apprentissage et le taux d’erreur de 
test. Avec k=1, le taux d’erreur d’apprentissage de KNN est nul, mais le taux d’erreur de test 
peut être assez élevé. De manière générale, lorsque l’on utilise des méthodes de 
classification plus flexibles, le taux d’erreur d’apprentissage diminue, mais le taux d’erreur 
de test ne diminue pas nécessairement. 
 
La figure représente les erreurs de test et d’apprentissage de KNN en fonction de 1/k. 
Lorsque 1/k augmente, la méthode devient plus flexible. Le taux d’erreur d’apprentissage 
diminue systématiquement à mesure que la flexibilité augmente. En revanche, l’erreur de 
test présente une forme caractéristique en U : elle diminue d’abord (avec un minimum aux 
alentours de K=31), puis augmente de nouveau lorsque la méthode devient excessivement 
flexible et sur-ajuste les données. 
 
Quand k diminue, le modèle devient plus flexible : il « colle » davantage aux données. À 
l’extrême, k=1 mémorise l’échantillon : chaque point est son propre plus proche voisin, donc 
l’erreur d’apprentissage tombe à zéro. Cela ne signifie pas que le modèle généralise bien. 
 
L’erreur de test a souvent une forme en U car deux effets antagonistes coexistent (biais – 
variance). Lorsque k est grand (donc 1/k petit), la décision est très lissée et le modèle est 
rigide. Le biais est élevé, ce qui entraîne un sous-ajustement et une erreur de test élevée. 
Lorsque k est très petit (donc 1/k grand), la décision est très instable et la variance élevée. 
Cela entraîne un surajustement (overfitting) et les erreurs de test remontent. 
 

 
Figure 8 : Erreur d'apprentissage et de test en fonction de 1/k 
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II.5. Métriques géométriques usuelles 

Changer la distance utilisée pour regrouper les voisins d’une observation peut changer 
fortement la frontière. Voici par exemple trois distances naturelles qui peuvent être utilisées 
avec KNN dès que les observations sont des vecteurs réels. Ces distances sont sensibles à 
l’échelle des variables : il faut souvent normaliser les données. 
 

Pour deux points 𝑥 = (𝑥1, . . . , 𝑥𝑝) et 𝑧 = (𝑧1, . . . , 𝑧𝑝) dans ℝ𝑝 : 

 
- Distance L1 (Manhattan) : 

𝑑1(𝑥, 𝑧) = ‖𝑥 − 𝑧‖1 =∑|𝑥𝑗 − 𝑧𝑗|

𝑝

𝑗=1

 

- Distance L2 (Euclidienne) : 

𝑑2(𝑥, 𝑧) = ‖𝑥 − 𝑧‖2 = √∑(𝑥𝑗 − 𝑧𝑗)
2

𝑝

𝑗=1

 

- Distance L (Chebyshev) : 

𝑑∞(𝑥, 𝑧) = ‖𝑥 − 𝑧‖∞ = max
1≤𝑗≤𝑝

|𝑥𝑗 − 𝑧𝑗| 

 
Figure 9 : Distances L2, L1 et L 

Ces distances usuelles sont utilisées dans les problèmes numériques ou qui ont une 
modélisation géométrique, mais elles ne sont pas adaptées à toutes les situations. On peut 
alors utiliser d’autres mesures ou indices de similarité dont quelques exemples sont donnés 
dans les paragraphes suivants. 
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II.6. Indice et distance de Jaccard 

On définit l’indice de Jaccard comme une mesure de similarité entre deux ensembles finis A 
et B (l’un d’eux étant non vide) en posant : 
 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 𝑞𝑢𝑖 𝑎 𝑙𝑒𝑠 𝑝𝑟𝑜𝑝𝑟𝑖é𝑡é𝑠 {

0 ≤ 𝐽(𝐴, 𝐵) ≤ 1
𝐽(𝐴, 𝐵) = 1 ⇔ 𝐴 = 𝐵

𝐽(𝐴, 𝐵) = 0 ⇔ 𝐴 ∩ 𝐵 = ∅
 

 
On peut lui associer la distance de Jaccard, définie par : 
 

𝑑𝐽(𝐴, 𝐵) = 1 − 𝐽(𝐴, 𝐵) = 1 −
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=
|𝐴 ∆ 𝐵|

|𝐴 ∪ 𝐵|
 

 
… où 𝐴 ∆ 𝐵 désigne la différence symétrique entre A et B : 𝐴 ∆ 𝐵 = (𝐴 ∪ 𝐵) \ (𝐴 ∩ 𝐵) 
 
Cet indice intervient lorsqu’on souhaite comparer des éléments caractérisés par des 
attributs booléens/binaires (présence ou non de certaines propriétés). 
 
Supposons que nous voulions comparer des individus selon qu’ils possèdent ou non des 
propriétés 𝑃𝑖, i = {0,1,2,3,4}. Chaque individu est représenté par un vecteur de {0,1}𝑛 avec 
𝑥𝑖 = 1 si et seulement si 𝑃𝑖(𝑥) : 
 

𝑋 =

[
 
 
 
 
1
1
0
1
0]
 
 
 
 

  ne vérifie pas 𝑃2,                       𝑌 =

[
 
 
 
 
0
1
1
0
0]
 
 
 
 

  vérifie 𝑃2 

 
Ici, 𝐴 = {0,1,3} et 𝐵 = {1,2} donc 𝐴 ∩ 𝐵 = {1} et 𝐴 ∪ 𝐵 = {0,1,2,3} et l’indice de Jaccard 
vaut : 

𝐽(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
=
1

4
= 0,25 

La distance de Jaccard vaut : 
 

𝑑𝐽(𝐴, 𝐵) = 1 − 𝐽(𝐴, 𝐵) = 0,75 

 
La distance de Jaccard est nulle lorsque les vecteurs X et Y sont identiques, égale à 1 lorsque 
∀𝑖, 𝑥𝑖 ≠ 𝑦𝑖. 
 

II.7. Comparaison de textes, matrices termes-documents 

Pour évaluer la proximité entre documents textes issus d’un même corpus on commence par 
en donner une représentation sommaire en repérant les mots utiles du corpus et en 
associant à chaque document Dj un vecteur colonne Xj dont le terme Xi,j dépend de la 

fréquence du mot ou du terme ti dans le document et dans le corpus 𝒞. 
 
Le nombre d’occurrences du terme pourrait servir à comparer grossièrement des documents 
de même taille, mais on préfère le plus souvent le codage TF-IDF (TF : fréquence ou plutôt 
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nombre d’occurrences des termes dans les documents, IDF : inverse du nombre de 
documents contenant un terme) défini par les formules : 

𝑥𝑖,𝑗 = 𝑡𝑓𝑡𝑖,𝑑𝑗⏟  
𝑇𝐹

× 𝑙𝑛
|𝒞|

𝑑𝑓𝑡𝑖⏟  
𝐼𝐷𝐹

 𝑎𝑣𝑒𝑐 {
𝑡𝑓𝑡𝑖,𝑑𝑗  :  𝑓𝑟é𝑞𝑢𝑒𝑛𝑐𝑒 𝑑𝑒 𝑡𝑖 𝑑𝑎𝑛𝑠 𝑙𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 𝐷𝑗

𝑑𝑓𝑡𝑖    ∶  𝑛𝑜𝑚𝑏𝑟𝑒 𝑑𝑒 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑐𝑜𝑛𝑡𝑒𝑛𝑎𝑛𝑡 𝑡𝑖
 

Un indice de similarité entre deux documents est alors donné par la similarité cosinus définie 
comme le cosinus de l’angle entre Xj et Xk comme vecteurs de ℝ𝑛 avec n la taille du lexique 

retenu (de quelques milliers à quelques dizaines de milliers de termes en pratique) : 

𝑠𝑖𝑚(𝐷𝑗 , 𝐷𝑘) =
∑ 𝑥𝑖,𝑗𝑥𝑖,𝑘𝑖

‖𝑋𝑗‖2
‖𝑋𝑘‖2

=
〈𝑋𝑗, 𝑋𝑘〉

‖𝑋𝑗‖2
‖𝑋𝑘‖2

 

Dans le cas où le terme ti est présent dans tous les documents, on a alors 𝑑𝑓𝑡𝑖 = |𝒞|, et donc 

son IDF vaut 0 et xi,j = 0. Ce serait le cas avec les mots courants de la langue, articles, 

prépositions, auxiliaires que l’on évite systématiquement de prendre en compte (mots-vides 
ou stop-words en anglais). 
 
Dans le cas où le terme ti n’est présent que dans un seul document Dj, on a 𝑑𝑓𝑡𝑖 = 1. Ainsi le 

coefficient de 𝑡𝑓𝑡𝑖,𝑑𝑗 dans 𝑥𝑖,𝑗 prend la valeur maximale et 𝑥𝑖,𝑗 = 𝑡𝑓𝑡𝑖,𝑑𝑗𝑙𝑛|𝒞|. 

 

Si on pose 𝛿(Dj, Dk) = 1 − 𝑠𝑖𝑚(𝐷𝑗 , 𝐷𝑘), alors si 𝛿(Dj, Dk) = 0 cela signifie que 

𝑠𝑖𝑚(𝐷𝑗 , 𝐷𝑘) = 1 et donc que les deux vecteurs sont proportionnels. Donc pour tout indice i 

qui correspond au même terme ti, on a : 

𝑘 =
𝑥𝑖,𝑗

𝑥𝑖,𝑘
=

𝑡𝑓𝑡𝑖,𝑑𝑗 × 𝑙𝑛
|𝒞|
𝑑𝑓𝑡𝑖

𝑡𝑓𝑡𝑖,𝑑𝑘 × 𝑙𝑛
|𝒞|
𝑑𝑓𝑡𝑖

=
𝑡𝑓𝑡𝑖,𝑑𝑗
𝑡𝑓𝑡𝑖,𝑑𝑘

 

Cela signifie que les occurrences des mots dans les deux documents sont proportionnelles, 
comme par exemple si 𝐷𝑗  = « Bonjour à toi. » et 𝐷𝑘 = « Bonjour à toi. À toi, Bonjour ! ». 

 
Prenons l’exemple suivant composé de trois documents : 𝐷1 = « chat mange poisson » ;      
𝐷2 = « chien mange os » et 𝐷3 = « chat chat mange ». 
Le vocabulaire associé est : [chat, chien, mange, poisson, os]. 
 
Les fréquences des termes : 𝑡𝑓𝑡𝑖,𝑑1 = (1,0,1,1,0), 𝑡𝑓𝑡𝑖,𝑑2 = (0,1,1,0,1) et 𝑡𝑓𝑡𝑖,𝑑3 = (2,0,1,0,0) 

Nombre de documents contenant les termes : 𝑑𝑓𝑡𝑖 = (2,1,3,1,1) 

𝑥1 = 𝑡𝑓𝑡𝑖,𝑑1 × 𝑙𝑛
|𝒞|

𝑑𝑓𝑡𝑖
= 𝑡𝑓𝑡𝑖,𝑑1 × 𝑙𝑛

3

(2,1,3,1,1)
 

       = 𝑡𝑓𝑡𝑖,𝑑1 × (0.405, 1.0986, 0, 1.0986 , 1.0986) 

       =  (1, 0, 1, 1, 0) ∙ (0.405, 1.0986, 0, 1.0986 , 1.0986) = (0.405, 0, 0, 1.0986, 0) 
𝑥2  =  (0, 1, 1, 0, 1) ∙ (0.405, 1.0986, 0, 1.0986 , 1.0986) = (0, 1,0986, 0, 0, 1.0986) 
𝑥3  =  (2, 0, 1, 0, 0) ∙ (0.405, 1.0986, 0, 1.0986 , 1.0986)  = (0.8109, 0, 0, 0, 0) 

• 𝑠𝑖𝑚(𝐷1, 𝐷2) =
〈𝑋1,𝑋2〉

‖𝑋1‖2‖𝑋2‖2
= 0 : le seul mot commun est « mange » mais comme il est 

présent partout, son IDF vaut 0 et il ne contribue pas au TF-IDF. 

• 𝑠𝑖𝑚(𝐷1, 𝐷3) = 0.345 ; 𝑠𝑖𝑚(𝐷2, 𝐷3) =0 : le seul mot commun est « mange » 
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II.8. Algorithme KNN en classification 

On utilisera ici les notations argmax et argmin : étant donné des réels a1, . . . , a𝑝, la notation 

argmax
𝑗 ∈ ⟦1,𝑝⟧

 a𝑗 ou argmax(a1, . . . , a𝑝) désigne un indice 𝑗0 ∈ ⟦1, 𝑝⟧ tel que max
𝑗 ∈ ⟦1,𝑝⟧

 a𝑗 = 𝑎𝑗0. La 

notation argmin est définie de manière analogue. 
 
On considère une classification multi-classes avec K classes c1, c2, …, cp, un ensemble de test 
{(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛. 
 

Algorithme des k plus proches voisins - classification 
 
KNN_CLASSIFICATION(x) : 

Renvoyer argmax
𝑗 ∈ ⟦1,𝑝⟧

|{𝑖 ∈ ⟦1, 𝑛⟧ ∶  𝑥𝑖 ∈ 𝒩𝑘(𝑥) 𝑒𝑡 𝑦𝑖 = 𝑗}| 

 

 
Voici une implémentation en Python avec distance euclidienne : 
 

import numpy as np 
    """ 
    X : array-like, shape (n, p) 
        Données d'entraînement (n points en dimension p). 
    y : array-like, shape (n,) 
        Étiquettes d'entraînement. 
    z : array-like, shape (p,) 
        Point à classer. 
    k : int 
        Nombre de plus proches voisins (1 <= k <= n). 
 
    y_pred : même type que y, classe prédite pour z. 
    """ 
def knn_classification(X, y, z, k): 
    X = np.asarray(X) 
    y = np.asarray(y) 
    z = np.asarray(z) 
 
    # Normes euclidiennes 
    d2 = np.linalg.norm((X - z), axis=1)     # shape (n,) 
 
    # Indices des k plus proches voisins 
    idx = np.argsort(d2)[:k]                 # shape (k,) 
 
    # Labels des voisins 
    voisins = y[idx] 
 
    # Vote majoritaire 
    classes, counts = np.unique(voisins, return_counts=True) 
 
    # En cas d'égalité, np.argmax choisit la première occurrence  
    return classes[np.argmax(counts)] 
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Parmi les fonctions de la bibliothèque Numpy utilisées : 
- np.asarray(...) : permet de convertir une liste Python en tableau NumPy 

X = np.asarray(X) transforme par exemple une liste de n points [[...],[...],...] 
en tableau 2D de forme (n, p). 

- np.argsort(…) : ne trie pas les valeurs ; retourne les indices qui trieraient le tableau. 
Exemple : si d2 = [0.3, 2.1, 0.1], alors np.argsort(d2) = [2, 0, 1] 

- np.unique(voisins, return_counts=True) : renvoie les valeurs distinctes triées 
et éventuellement combien de fois cette valeur apparait. 

Exemple : voisins = [1,1,0,1,0], classes = [0,1] et counts = [2, 3] 
- np.argmax(counts) : renvoie l’indice de la plus grande valeur. 

Exemple : counts=[2,3] → np.argmax(counts)=1 
 
Concernant np.linalg.norm(..., axis=1) : Calcul la norme sur un axe spécifique. 

Si x est (n,p) et z est (p,) alors axis=1 donne un résultat (n,) (norme ligne par ligne) 
Exemple :  X = np.array([[1,2,3],[4,5,6]]) possède une forme (2,3) 

np.linalg.norm(X, axis=0) renvoie une forme (3,) : [4.1, 5.4, 6.7] 
np.linalg.norm(X, axis=1) renvoie une forme (2,) : [3.7, 8.8]  

 
Dans le programme, np.linalg.norm((X – z), axis=1)**2 réalise l’opération de cette manière : 

- X a une forme (n, p) : n points de dimension p, forme (n,p) 
o Exemple : X = np.array([[1,2],[3,4],[5,6]]) : Trois points de dimension 2  (3,2) 

- z est le point à classer, de dimension p, forme (p,) 
o Exemple : z = np.array([3,4]) : Point de dimension 2 (2,) 

𝑋 = [

𝑥1
𝑥2
𝑥3
] = [

1 2
3 4
5 6

]    ;  𝑧 = [3 4] 

- (X - z) : soustrait les composantes de z à chaque point contenu dans x ; c’est un array 
de forme (3,2) 

𝑋 − 𝑧 = [
1 2
3 4
5 6

] − [3 4] = [

𝑥1 − 𝑧
𝑥2 − 𝑧
𝑥3 − 𝑧

] = [
−2 −2
0 0
2 2

] 

 
- np.linalg.norm((X - z), axis=1) : La fonction calcule la norme sur l’axe 1 (norme ligne 

par ligne). Il retourne un résultat de forme (3,) : [2.83, 0, 2.83]  

𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚 ([
−2 −2
0 0
2 2

] , 𝑎𝑥𝑖𝑠 = 1) = [

‖(−2,−2)‖2
‖(0,0)‖2
‖(2,2)‖2

] = [

‖𝑥1 − 𝑧‖2
‖𝑥2 − 𝑧‖2
‖𝑥3 − 𝑧‖2

] 

On peut voir quelques fois que la norme est élevée au carré (pour respecter l’écriture 
usuelle en math ‖∙‖2). Cela peut se faire avec l’opération **2 qui élève chaque élément au 
carré (élément par élément) : 

𝑛𝑝. 𝑙𝑖𝑛𝑎𝑙𝑔. 𝑛𝑜𝑟𝑚([
−2 −2
0 0
2 2

] , 𝑎𝑥𝑖𝑠 = 1) ∗∗ 2 == [

‖𝑥1 − 𝑧‖2
2

‖𝑥2 − 𝑧‖2
2

‖𝑥3 − 𝑧‖2
2

] = [
8
0
8
] 



COURS : ALGORITHMES POUR L’INTELLIGENCE ARTIFICIELLE – ALGORITHME KNN 

15 

II.9. Algorithme KNN en régression 

On considère une régression avec un ensemble d’apprentissage {(𝑥𝑖, 𝑦𝑖)}𝑖=1..𝑛. 
 
Pour un problème de régression, on associe à x la moyenne des étiquettes de ses k plus 
proches voisins. 
 

Algorithme des k plus proches voisins - régression 
 
KNN_REGRESSION(x) : 

 
Renvoyer   
 

 
 

 
Voici une implémentation en Python avec distance euclidienne : 
 

import numpy as np 
    """ 
    X : array-like, shape (n, p) 
        Données d'entraînement (n points en dimension p). 
    y : array-like, shape (n,) 
        Étiquettes d'entraînement. 
    z : array-like, shape (p,) 
        Point à classer. 
    k : int 
        Nombre de plus proches voisins (1 <= k <= n). 
 
    y_pred : même type que y, valeur prédite pour z. 
    """ 
def KNN_REGRESSION(x,y,z,k): 
    x=np.array(x) 
    y=np.array(y)  
     
    # Liste des normes au carré des z-x[i] 
    N=np.linalg.norm((z-x),axis=1)**2 
     
    # Indices des k plus proches voisins 
    indices_KNN=np.argsort(N)[:k] 
     
    voisins=np.array([y[i] for i in indices_KNN]) 
     
    return np.mean(voisins)  
 

     

1

𝑘
 ∑𝑦𝑖

𝑛

𝑖=1
𝑥𝑖 ∈ 𝒩𝑘(𝑥)

 


